References

p. 89-94


Texte intégral

Des DOI sont automatiquement ajoutés aux références bibliographiques par Bilbo, l’outil d’annotation bibliographique d’OpenEdition. Ces références bibliographiques peuvent être téléchargées dans les formats APA, Chicago et MLA.

Abdi, H., & Valentin, D. (2007). Multiple correspondence analysis. In Salkind, N.J. Encyclopedia of measurement and statistics (pp. 651-657). Sage Publications.

Agresti, A. (2007). An introduction to categorical data analysis (2nd ed.). Hoboken, New Jersey: Wiley-Interscience.

10.1002/0470114754 :

Barrientos, J. (2008). Calidad de la educación pública y logro académico en Medellín 2004-2006. Una aproximación por regresión intercuartil. Lecturas de Economía, 68 (68), 121-144.

Bell, B. A., Ferron, J. M., & Kromrey, J.D. (2008). Cluster size in multilevel models: the impact of Sparse Data Structures on Point and Interval Estimates in Two-Level models. JSM Proceedings, Section on Survey Research Methods, 1122-1129.

Benzécri, J. (1979). Sur le calcul des taux dʼinertie dans lʼanalyse dʼun questionnaire. Cahiers de lʼAnalyse des Données, 4 (3), 377-378.

Castañeda, T. (2005). Targeting Social Spending To The Poor With Proxy-Means Testing: Colombiaʼs sisben System, Social Protection Unit. Human Development Network. The World Bank. Retrieved from: http://web.iaincirebon.ac.id/ebook/moon/Mixed/0529.pdf

Coleman, J., Campbell, E., Hobson, C., McPartland, F., Mood, A., & Weinfeld, F. (1966). Equality of educational opportunity. Washington D.C.: U.S. Government.

Correa, J.J. (2004). Determinantes del Rendimiento Educativo de los Estudiantes de Secundaria en Cali: un análisis multinivel. Revista Sociedad y Economía, 6, 81-105.

Delgado-Ramírez, M. B. (2013). Test on the quality of higher education–saber pro–What do the results indicate? Revista Colombiana de Anestesiología, 41 (3), 177-178.

DiStefano, C., Zhu, M., & Mindrila, D. (2009). Understanding and using factor scores: Considerations for the applied researcher. Practical Assessment, Research & Evaluation, 14 (20), 1-11.

Duncan, O. D., Featherman, D.L., & Duncan, B. (1972). Socioeconomic background and achievement. New York: Seminar Press.

Eurydice Network. (2009). National Testing of Students in Europe: Objectives, Organization and Use of Results. Retrieved from: http://eacea.ec.europa.eu/education/eurydice/documents/thematic_reports/109EN.pdf

Field, A. (2009). Discovering statistics using spss (3rd ed.). London: Sage publications.

Fox, J. (1991). Regression Diagnostics: An Introduction. Newbury Park, Calif.: Sage Publications.

10.2307/2532230 :

Gamoran, A., & Long, D. A. (2007). Equality of Educational Opportunity A 40 Year Retrospective. In Teese, R., Lamb, S., & Duru-Bellat, M. (Eds.), International studies in educational inequality, theory and policy (pp. 23-47). Dordrecht: Springer.

Gaviria, A. & Barrientos, J. (2001a). Calidad de la Educación y Rendimiento Académico en Bogotá. Coyuntura Social-Fedesarrollo, 24, 111-126.

Gaviria, A. & Barrientos, J. (2001b). Características del Plantel y Calidad de la Educación en Bogotá. Coyuntura Social-Fedesarrollo, 25, 81-98.

Goldstein, H. (2011). Multilevel Statistical Models (4th ed.). New Jersey: John Wiley & Sons.

10.1002/9780470973394 :

Greenacre, M. (1993). Correspondence Analysis in Practice. London: Academic Press.

10.1201/9781315369983 :

Heck, R., & Thomas, S. (2000). An Introduction to Multilevel Modelling Techniques. New Jersey: Lawrence Erlbaum Associates Publishers.

Heiberger, R., & Holland, B. (2004). Statistical analysis and data display: An intermediate course with examples in S-plus, R, and SAS. New York: Springer.

10.1007/978-1-4939-2122-5 :

ibm Corporation. (2016a, April 1). Symmetric and directional measures [literally] (Repository). ibm Knowledge Center, Retrieved from: http://www.ibm.com/support/knowledgecenter/sslvmb_21.0.0/com.ibm.spss.statistics.cs/xtab_measures_satisf_02.htm

ibm Corporation. (2016b, April 1). Wilks’Lambda (Repository). ibm Knowledge Center, Retrieved from: http://www.ibm.com/support/knowledgecenter/sslvmb_22.0.0/com.ibm.spss.statistics.cs/spss/tutorials/discrim_bankloan_wilks.htm

ibm Corporation. (2016c, April 1). Checking Homogeneity of Covariance (Repository). ibm Knowledge Center, Retrieved from: http://www.ibm.com/support/knowledgecenter/sslvmb_22.0.0/com.ibm.spss.statistics.cs/spss/tutorials/discrim_bankloan_boxsm.htm

ibm Corporation. (2016d, April 1). Factor Analysis Scores/Anderson-Rubin Method (Repository). ibm Knowledge Center, Retrieved from: http://www.ibm.com/support/knowledgecenter/sslvmb_20.0.0/com.ibm.spss.statistics.help/idh_fact_sco.htm?lang=hu

Jones, K., & Subramanian, S. (2013). Developing multilevel models for analyzing contextuality, heterogeneity and change using MLwiN 2.2. (Vol. 2). Bristol University, Retrieved from: https://www.researchgate.net/publication/260772180_Developing_multilevel_models_for_analysing_contextuality_heterogeneity_and_change_using_MLwiN_Volume_2?ev=prf_pub

Kang, L., & Tian, L. (2013). Estimation of the volume under the roc surface with three ordinal diagnostic categories. Computational Statistics & Data Analysis, 62, 39-51.

10.1016/j.csda.2013.01.004 :

Kapasný, J., & Rezác, M. (2013). Three-way roc analysis using SAS software. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61 (7), 2269-2275.

10.11118/actaun201361072269 :

Kellaghan, T., Greaney, V., & Murray, T. (2009). Using the Results of a National Assessment of Educational Achievement. Washington. D.C.: The World Bank.

Kutner, M., Nachtsheim, C., Neter, J., & Li, W. (2005). Applied Linear Statistical Models. New York: McGraw-Hill.

Li, G., Chen, W., & Duanmu, J. L. (2010). Determinants of International Students’Academic Performance: A Comparison between Chinese and Other International Students. Journal of Studies in International Education, 14 (4), 389-405.

Mass, C., & Hox, J. (2003). The influence of violations of assumptions on multilevel parameter estimates and their standard error. Computational Statistics & Data Analysis, 46 (3), 427-440.

10.1016/j.csda.2003.08.006 :

Mayers, A. (2013). Introduction to Statistics andspss in Psychology. New Jersey: Prentice Hall.

McKenzie, K., & Schweitzer, R. (2001). Who succeeds at university? Factors predicting academic performance in first year Australian university students. Higher Education Research and Development, 20 (1), 21-33.

10.1080/07924360120043621 :

Michailidis, G., & deLeeuw, J. (1998). The Gifi System of Descriptive Multivariate Analysis. Statistical Science, 13 (4), 307-336.

10.1214/ss/1028905828 :

Morris, A. (2011). Student Standardised Testing: Current Practices in oecd Countries and a Literature Review. oecd Education Working Papers, 65, New Yersey: oecd Publishing.

Musso, M., Kyndt, E., Cascallar, E., & Dochy, F. (2013). Predicting general academic performance and identifying the differential contribution of participating variables using artificial neural networks. Frontline Learning Research, 1 (1), 42-71.

10.14786/flr.v1i1.13 :

Nimon, K.F. (2012). Statistical assumptions of substantive analyses across the general linear model: a mini-review. Frontiers in psychology, 3 (322), 1-5.

10.3389/fpsyg.2012.00322 :

Osborne, J., & Waters, E. (2002). Four Assumptions of Multiple Regression that Researchers should always test. Practical Assessment, Research and Evaluation. Retrieved from: http://pareonline.net/getvn.asp?n=2&v=8

Raudenbush, S., & Bryk, A. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Newbury Park: Sage.

Rovai, A. P., Baker, J. D., & Ponton, M. K. (2013). Social science research design and statistics: A practitioner’s guide to research methods and ibm spss. Watertree Press llc.

Sharma, S. (1996). Applied Multivariate Techniques. New York: John Wiley & Sons Inc.

Sirin, S. (2005). Socioeconomic Status and Academic Achievement: A Meta-Analytic Review of Research. Review of Educational Research, 75 (3), 417-453.

10.3102/00346543075003417 :

Starkweather, J. & Herrington, R. (2014). Correspondence Analysis (Repository). University of North Texas (Research and Statistical Support). Retrieved from: http://www.unt.edu/rss/class/Jon/spss_SC/Module9/M9_Correspondence/spss_M9_Correspondence1.htm

Starkweather, J., & Moske, A. (2011). Research and Statistical Support. Retrieved from: http://www.unt.edu/rss/class/Jon/Benchmarks/MLR_JDS_Aug2011.pdf

Tabachnick, B., & Fidell, L. (2001). Using Multivariate Statistics (5th ed.). Boston: Pearson.

Tacq, J. (1997). Multivariate Analysis Techniques in Social Science Research. London: SAGE Publications Ltd.

The World Bank. (2012). Reviews of National Policies for Education: Tertiary Education in Colombia 2012. Retrieved from: http://www.oecd.org/education/skills-beyond-school/Reviews%20of%20National%20Policies%20for%20Education%20Tertiary%20Education%20in% 20Colombia%202012.pdf

ucla (2014). Introduction to sas. ucla: Academic Technology Services, Statistical Consulting Group. Retrieved from: http://www.ats.ucla.edu/stat/

Wang, L., Beckett, G., & Brown, L. (2006). Controversies of Standardized Assessment in School Accountability Reform: A Critical Synthesis of Multidisciplinary Research Evidence. Applied Measurement in Education, 19 (4), 305-328.

10.1207/s15324818ame1904_5 :

White, K. (1982). The relation between socioeconomic status and academic achievement. Psychological Bulletin, 91 (3), 461-481.

10.1037/0033-2909.91.3.461 :

Wuensch, K. (2014). Discriminant Function Analysis with Three or More Groups (Lecture notes). East Carolina University (Karl Wuensch’s Statistics Lessons). Retrieved from: http://core.ecu.edu/psyc/wuenschk/MV/DFA/DFA3.docx

Zwick, R. (2012). The Role of Admissions Test Scores, Socioeconomic Status, and High School Grades in Predicting College Achievement. Pensamiento Educativo. Revista de Investigación Educacional Latinoamericana, 2 (49), 23-30.


Le texte seul est utilisable sous licence Licence OpenEdition Books. Les autres éléments (illustrations, fichiers annexes importés) sont « Tous droits réservés », sauf mention contraire.