Table des matières
Pierpaolo Basile, Franco Cutugno, Malvina Nissim et al.
Preface to the EVALITA 2016 ProceedingsPart I: Introduction to EVALITA 2016
Pierpaolo Basile, Franco Cutugno, Malvina Nissim et al.
EVALITA 2016: Overview of the 5th Evaluation Campaign of Natural Language Processing and Speech Tools for ItalianRachele Sprugnoli, Viviana Patti et Franco Cutugno
Raising Interest and Collecting Suggestions on the EVALITA Evaluation CampaignPart II: EVALITA 2016: Task overviews and participants reports
Leonardo Badino
The ArtiPhon Task at Evalita 2016Anne-Lyse Minard, Manuela Speranza et Tommaso Caselli
The EVALITA 2016 Event Factuality Annotation Task (FactA)Pierpaolo Basile, Annalina Caputo, Anna Lisa Gentile et al.
Overview of the EVALITA 2016 Named Entity rEcognition and Linking in Italian Tweets (NEEL-IT) TaskGiuseppe Attardi, Daniele Sartiano, Maria Simi et al.
Using Embeddings for Both Entity Recognition and Linking in TweetsFlavio Massimiliano Cecchini, Elisabetta Fersini, Pikakshi Manchanda et al.
UNIMIB@NEEL-IT : Named Entity Recognition and Linking of Italian Tweets- Introduction
- 1 Systems Description
- 2.1 Named Entity Recognition
- 2.2 Named Entity Linking
- 2.2.1 Learning2Link
- 2.2.2 Neural-Network Language Model (NNLM) Linking
- 2.3 NIL Clustering
- 3 Results and Discussion
- 3.1 Named Entity Recognition
- 3.2 Named Entity Linking
- 3.3 NIL Clustering
- 3.4 Overall
- 4 Conclusion
Francesco Corcoglioniti, Alessio Palmero Aprosio, Yaroslav Nechaev et al.
MicroNeel: Combining NLP Tools to Perform Named Entity Detection and Linking on MicropostsVittoria Cozza, Wanda La Bruna et Tommaso Di Noia
sisinflab: an ensemble of supervised and unsupervised strategies for the NEEL-IT challenge at Evalita 2016Anne-Lyse Minard, Mohammed R. H. Qwaider et Bernardo Magnini
FBK-NLP at NEEL-IT: Active Learning for Domain AdaptationCristina Bosco, Fabio Tamburini, Andrea Bolioli et al.
Overview of the EVALITA 2016Part Of Speech on TWitter for ITAlian Task
Giuseppe Attardi et Maria Simi
Character Embeddings PoS Tagger vs HMM Tagger for TweetsAndrea Cimino et Felice Dell’Orletta
Building the state-of-the-art in POS tagging of Italian TweetsTobias Horsmann et Torsten Zesch
Building a Social Media Adapted PoS Tagger Using FlexTag – A Case Study on Italian TweetsGiulio Paci
Mivoq Evalita 2016 PosTwITA taggerPartha Pakray et Goutam Majumder
NLP–NITMZ:Part–of–Speech Tagging on Italian Social Media Text using Hidden Markov ModelBarbara Plank et Malvina Nissim
When silver glitters more than gold: Bootstrapping an Italian part-of-speech tagger for TwitterEgon W. Stemle
bot.zen @ EVALITA 2016 A minimally-deep learning PoS-tagger (trained for Italian Tweets)- 1 Introduction
- 2 Design
- 2.1 Word Embeddings
- 2.2 Character-Level Sub-Word Information
- 2.3 Recurrent Neural Network Layer
- 3 Implementation
- 3.1 Word Embeddings
- 3.2 Character-Level Sub-Word Information
- 3.3 Recurrent Neural Network Layer
- 4 Results
- 4.1 Training Data for w2v and PoS Tagging
- 4.1.1 DiDi-IT (PoS, w2v)
- 4.1.2 Italian UD (PoS, w2v)
- 4.1.3 PoSTWITA (PoS and w2v)
- 4.1.4 C4Corpus (w2v)
- 4.1.5 PAISÀ (w2v)
- 4.2 PoSTWITA shared task
- 5 Conclusion & Outlook
Annalina Caputo, Marco De Gemmis, Pasquale Lops et al.
Overview of the EVALITA 2016 Question Answering for Frequently Asked Questions (QA4FAQ) TaskDivyanshu Bhardwaj, Partha Pakray, Jereemi Bentham et al.
Question Answering System for Frequently Asked QuestionsErick R. Fonseca, Simone Magnolini, Anna Feltracco et al.
Tweaking Word Embeddings for FAQ RankingArianna Pipitone, Giuseppe Tirone et Roberto Pirrone
ChiLab4It System in the QA4FAQ CompetitionFrancesco Barbieri, Valerio Basile, Danilo Croce et al.
Overview of the Evalita 2016 SENTIment POLarity Classification Task- 1 Introduction
- 2 Task description
- 3 Development and Test Data
- 3.1 Corpora Description
- 3.2 Annotation Scheme
- 3.3 Annotation procedure
- 3.4 Format and Distribution
- 4 Evaluation
- 5 Participants and Results
- 5.1 Task1: subjectivity classification
- 5.2 Task2: polarity classification
- 5.3 Task3: trony detection
- 6 Discussion
- 7 Closing Remarks
Giuseppe Attardi, Daniele Sartiano, Chiara Alzetta et al.
Convolutional Neural Networks for Sentiment Analysis on Italian TweetsDavide Buscaldi et Delia Irazù Hernandez-Farias
IRADABE2: Lexicon Merging and Positional Features for Sentiment Analysis in ItalianGiuseppe Castellucci, Danilo Croce et Roberto Basili
Context-aware Convolutional Neural Networks for Twitter Sentiment Analysis in ItalianAndrea Cimino et Felice Dell’Orletta
Tandem LSTM-SVM Approach for Sentiment Analysis- 1 Description of the system
- 1.1 Lexical resources
- 1.1.1 Sentiment Polarity Lexicons
- Existing Sentiment Polarity Lexicons
- Automatically translated Sentiment Polarity Lexicons
- Automatically created Sentiment Polarity Lexicons
- 1.1.2 Word Embedding Lexicons
- 1.2 The LSTM-SVM tandem system
- 1.2.1 The LSTM network
- 1.2.2 The SVM classifier
- Raw and Lexical Text Features
- Morpho-syntactic Features
- Lexicon features
- 2 Results and Discussion
- 3 Conclusion
Vito Vincenzo Covella, Berardina De Carolis, Stefano Ferilli et al.
Lacam&Int@UNIBA at the EVALITA 2016-SENTIPOLC TaskJan Deriu et Mark Cieliebak
Sentiment Analysis using Convolutional Neural Networks with Multi-Task Training and Distant Supervision on Italian TweetsEmanuele Di Rosa et Alberto Durante
Tweet2Check evaluation at Evalita Sentipolc 2016Simona Frenda
Computational rule-based model for Irony Detection in Italian Tweets- 1 Introduction
- 2 Related Work
- 3 Methodology
- 4 Analysis of corpus
- 4.1 Resources
- 4.2 Data Processing
- 5 Features
- 5.1 Positive Interjections
- 5.2 Expressions with “che”
- 5.3 Pronoun “tu” and Verb Morphology
- 5.4 Disjunctive Conjunction
- 5.5 Onomatopoeic Expressions for laughter
- 5.6 Ironic Emoticons
- 5.7 Hashtag
- 5.8 Regional Expressions
- 5.9 Quotation Marks
- 5.10 Heavy Punctuation
- 6 Results
- 7 Conclusion
Daniela Moctezuma, Eric S. Tellez, Mario Graff et al.
On the performance of B4MSA on SENTIPOLC’16Lucia C. Passaro, Alessandro Bondielli et Alessandro Lenci
Exploiting Emotive Features for the Sentiment Polarity Classification of tweetsIrene Russo et Monica Monachini
SamskaraMinimal structural features for detecting subjectivity and polarity in Italian tweets